|
شعاع خورشید (فاصله بین مرکز تا سطح آن) حدود 695.500 کیلومتر، تقریبا 109 برابر شعاع زمین است. مثال زیر به شما کمک می کند تا مقیاس خورشید، زمین و فاصله بین آنها را تصور کنید: اگر شعاع زمین را به اندازه عرض یک گیره کاغذ معمولی تصور کنیم، شعاع خورشید تقریبا برابر با پایه یک میز تحریر و فاصله آنها حدودا به اندازه 100 قدم خواهد بود.
قسمتی از خورشید که ما می بینیم دمایی حدود 5500 درجه سانتیگراد دارد. ستاره شناسان دمای ستارگان را با واحدی به نام کلوین (Kelvin) اندازه گیری می کنند و به طور خلاصه آن را K می نویسند. یک کلوین دقیقا برابر با 1 درجه سلسیوس یا 1.8 درجه فارنهایت است، اما تفاوت واحد کلوین با واحد سلسیوس در نقطه شروع آنهاست. مقیاس واحد کلوین از صفر مطلق که برابر است با 273.15 – درجه سانتیگراد آغاز می شود. بنابراین دمای سطح خورشید 5800K و دمای هسته خورشید بیش از 15میلیون K می باشد.
انرژی خورشید به واسطه واکنش های ترکیبی اتمی در اعماق هسته آن تامین می شود. در یک واکنش ترکیبی دو هسته اتم با یکدیگر همراه شده و هسته ای جدید را به وجود می آورند.
* پلاسما حالت چهارم ماده است. در خیلی جاها این چنین آموزش می دهند که ماده دارای سه حالت جامد، مایع و گاز است. پلاسما گاز شبه خنثایی از ذرات باردار و خنثی است که رفتار جمعی از خود ارائه میدهد. به عبارت دیگر میتوان گفت که واژه پلاسما به گاز یونیزه شدهای اطلاق میشود که همه یا بخش قابل توجهی از اتمهای آن یک یا چند الکترون از دست داده و به یونهای مثبت تبدیل شده باشند. یا به گاز به شدت یونیزه شدهای که تعداد الکترونهای آزاد آن تقریبا برابر با تعداد یونهای مثبت آن باشد، پلاسما گفته میشود. توضیحات بیشتر را در ادامه مقاله مطالعه خواهید نمود.
این ترکیب با تبدیل اجزای هسته به انرژی، تولید انرژی می کند. خورشید مانند زمین مغناطیسی است. دانشمندان با در نظر گرفتن میدان مغناطیسی یک جرم، خاصیت مغناطیسی آن جرم را تشریح می کنند. میدان مغناطیسی محدوده ای است که از همه فضای اشغال شده توسط یک جرم و بیشتر فضای پیرامون آن شامل می شود.
دانشمندان محدوده ای که در آن نیروهای مغناطیسی شناسایی می شوند(مثلا به وسیله قطب نما) را میدان مغناطیسی می نامند. فیزیکدانان خاصیت مغناطیسی یک جرم را بر اساس قدرت میدان مغناطیسی آن توصیف می کنند. این قدرت برابر است با نیرویی که یک میدان مغناطیسی بر یک جسم مغناطیسی مانند سوزن قطب نما اعمال می کند. قدرت میدان مغناطیسی عمومی خورشید تنها دو برابر قدرت میدان مغناطیسی زمین می باشد. ولی میدان مغناطیسی خورشید در مناطق کوچکی به شدت متمرکز است، با قدرتی معادل 3000 بار بیشتر از اندازه میدان مغناطیسی عمومی آن. این مناطق شکل دهنده ساختمان خورشید و به وجود آورنده ترکیبات سطح و اتمسفر آن یعنی منطقه ای که ما می بینیم می باشند. مناطق نسبتا سرد و لکه های خورشیدی، فوران های بسیار دیدنی که به آنها زبانه های خورشیدی می گویند و شعله های تاج خورشید، شکل کلی سطح خورشید را ایجاد می نمایند.
زبانه های خورشیدی شدیدترین انفجار و فوران در منظومه شمسی می باشند. سپس شعله های تاج خورشید که دارای شدتی کمتر از زبانه ها و محتوی مقدار بسیار زیادی ماده می باشند. تنها یک فوران در تاج خورشید می تواند حدود 20 بیلیون تن ماده را در فضا پخش کند. یک مکعب از جنس سرب که هر ضلع آن برابر با 1.2 کیلومتر است می تواند چنین جرمی داشته باشد.
خورشید 4.6 بیلیون سال پیش متولد شد و سوخت لازم برای اینکه تا 5 بیلیون سال دیگر به همین صورت باقی بماند را دارد. پس از آن اندازه خورشید آنقدر بزرگ می شود تا اینکه به نوعی از ستاره به نام غول سرخ تبدیل می شود. در آن هنگام لایه های بیرونی خود را با فراافکنی از دست می دهد. با فرو ریختن آنچه از خورشید باقی می ماند، به جرمی با نام کوتوله سفید تبدیل می شود و آرام آرام روشنایی خود را از دست می دهد و سرانجام وارد دوره جدید زندگی خود، به شکل یک جرم کم نور و سرد که گاهی به آن کوتوله سیاه می گویند، می شود.
مشخصات خورشید
جرم و چگالی
جرم خورشید 99.8 درصد از جرم کل منظومه شمسی است. این جرم معادل عدد 1027 X2 تن می باشد که با یک 2 و بیست وهفت صفر مقابل آن نوشته می شود. جرم خورشید 333.000 برابر جرم زمین است. میانگین چگالی آن حدود 90 پوند در هر فوت مکعب و یا 1.4 گرم در هر سانتیمتر مکعب می باشد. این مقدار تقریبا معادل 1.4 برابر چگالی آب و کمتر از یک سوم میانگین چگالی زمین است.
|
مقایسه اندازه خورشید با زمین و دیگر سیارات |
ترکیب بندی
بیشتر اتمهای خورشید، مانند اغلب ستارگان، اتمهای عنصر شیمیایی هیدروژن می باشند. بعد از هیدروژن، عنصر هلیوم در خورشید بسیار یافت می شود و بقیه جرم خورشید از اتمهای هفت عنصر دیگر تشکیل شده است. به ازای هر 1 میلیون اتم هیدروژن در کل خورشید، 98.000 اتم هلیوم، 850 اتم اکسیژن، 360 اتم کربن، 120 اتم نئون، 110 اتم نیتروژن، 40 اتم منیزیوم، 35 اتم آهن و 35 اتم سیلیکون وجود دارد. بنابراین حدودا 94 درصد از اتمها، هیدروژن و حدود 0.1 درصد اتمهایی غیر از هیدروژن و هلیوم می باشند.
اما هیدروژن سبک ترین عنصر است و 72 درصد از جرم این ستاره را تشکیل می دهد. هلیوم 26 درصد از جرم خورشید را به خود اختصاص داده است.
درون خورشید و بیشتر اتمسفر آن از پلاسما تشکیل شده است. پلاسما گازی است که دمای آن به قدری زیاد است که به نیروی مغناطیسی حساس می باشد. دانشمندان گاهی به تفاوتهای بین گاز و پلاسما بسیار تاکید کرده و پلاسما را حالت چهارم ماده، در کنار سه حالت جامد، مایع و گاز، می نامند. ولی در حالت کلی، دانشمندان تنها در صورت لزوم بین گاز و پلاسما تفاوت قائلند.
تفاوت اساسی بین گاز و پلاسما متاثر از حرارت بسیار شدید است: این حرارت باعث جدا شدن اتهای گاز می شود. آنچه باقی می ماند – یعنی پلاسما – از اتمهای باردار به نام یون و ذرات باردار به نام الکترون که به طور مستقل حرکت می کنند، تشکیل شده است.
یک اتم خنثی شامل یک یا چند الکترون است که مانند یک پوسته در اطراف هسته مرکز اتم عمل می کنند. هر الکترون حامل یک بار منفی الکتریکی است. هسته در قلب مرکزی یک اتم جای گرفته است که تقریبا همه جرم اتم را دارد. ساده ترین شکل هسته، که همان هسته هیدروژن است، از یک ذره به نام پروتون تشکیل شده است. یک پروتون حامل یک بار مثبت الکتریکی است. بقیه شکل های هسته شامل یک یا چند پروتون و یک یا چند نوترون می باشند. نوترون بار الکتریکی ندارد بنابراین بار الکتریکی همه هسته ها مثبت است. یک اتم خنثی به تعداد پروتونهایش، الکترون دارد بنابراین مجموع بارهای آن برابر با صفر است.
یک اتم یا مولکول که یک یا چند الکترون خود را از دست بدهد بار مثبت پیدا می کند و به آن یون یا یون مثبت می گویند. بیشتر اتمهای خورشید، یونهای مثبت هیدروژنند. بنابراین، بیشتر خورشید شامل پروتون و الکترون های مستقل است.
|
خورشید بسیار بزرگتر از زمین است. از مرکز خورشید تا سطح آن 109 برابر شعاع زمین می باشد. بعضی از طوفان های گازی که از سطح خورشید بلند می شوند از زمین بزرگترند. |
مقدار نسبی پلاسما و دیگر گازها در یک منطقه مشخص شده از اتمسفر خورشید به دمای آن منطقه بستگی دارد. با افزایش دما، اتمهای بیشتر و بیشتری یونیزه می شوند و اتم های یونیزه شده الکترون های بیشتر و بیشتری از دست می دهند. تاج خورشید نام منطقه ای از اتمسفر خورشید است که بیش از هر جای دیگر در اتمسفر خورشید، یونیزه شده است. دمای تاج خورشید معمولا بین 3 میلیون K تا 5 میلیون K یعنی دمایی فراتر از دمای لازم برای جدا کردن بیش از نیمی از 26 الکترون اتم آهن می باشد.
اینکه چه اندازه از اتم های یک گاز اتمهای یونیزه هستند بستگی به دما دارد. اگر دما نسبتا داغ باشد، اتمها یونیزه می شوند اما چنانچه گاز نسبتا سرد باشد امکان ترکیب شیمیایی اتمها و تشکیل مولکول به وجود می آید. بیشتر اتمهای سطح خورشید یونیزه شده اند. ولی در مناطق لکه های خورشیدی به دلیل پائین بودن دما، اتمها تشکیل مولکول می دهند.
انرژی بازده
بیشتر انرژی که خورشید ساطع می کند نور مرئی و اشعه های فروسرخ که ما آن را به صورت گرما دریافت می کنیم، می باشد. نور مرئی و پرتوهای فروسرخ، دو شکل از پرتوهای الکترومغناطیسی می باشند. خورشید همچنین پرتوهایی از ذرات که بیشتر پروتون ها و الکترون ها می باشند را ساطع می نماید.
پرتوهای الکترومغناطیسی
پرتوهای الکترومغناطیسی شامل نیروی الکتریکی و نیروی مغناطیسی می باشند. این پرتوها را می توان مانند یک موج انرژی و یا بسته های ذره مانندی از انرژی به نام فوتون دانست.
نور مرئی، اشعه فروسرخ و دیگر اشکال پرتوهای الکترومغناطیسی از حیث مقدار انرژی با هم متفاوتند. شش گروه از انرژی ها، طیف انرژی های الکترومغناطیس را تشکیل می دهند. از کم انرژی ترین تا پر انرژی ترین به ترتیب عبارتند از: امواج رادیویی، اشعه فروسرخ، نور مرئی، اشعه فرا بنفش، اشعه ایکس و اشعه گاما. مایکروویو ها، که موج های بسیار قوی رادیوئی هستند، گاهی در یک رده دیگر به طور مجزا قرار می گیرند. پرتوهای خورشید شامل همه پرتوهای طیف الکترومغناطیس می باشند.
مقدار انرژی در امواج الکترومغناطیس ارتباط مستقیم با طول موج* یعنی فاصله بین قله های پیاپی آنها دارد. هرچه انرژی پرتو بیشتر باشد، طول موج کوتاهتر است. برای مثال پرتوهای گاما طول موجی کوتاهتر از امواج رادیوئی دارند. انرژی یک ذره فوتون بستگی به مکان آن در طیف دارد. برای مثال یک فوتون اشعه گاما انرژی بیشتری از یک فوتون رادیوئی دارد.
همه اشکال امواج الکترومغناطیس با سرعت برابر، معادل سرعت نور (299.792 کیلومتر در ثانیه) در فضا سفر می کنند. با این سرعت، یک فوتون آزاد شده از خورشید تنها حدود 8 دقیقه طول می کشد تا به زمین برسد.
امواج الکترومغناطیسی که از خورشید به بالای اتمسفر زمین می رسند ثابت خورشیدی نام دارند. این مقدار برابر است با حدود 1370 وات در هر متر مربع. ولی تنها حدود 40 درصد از این امواج به سطح زمین می رسند. اتمسفر زمین مقداری از نور مرئی و اشعه فروسرخ، تقریبا همه پرتوهای فرابنفش و تمامی پرتوهای ایکس و گاما را فیلتر می کند. تقریبا همه امواج رادیویی به سطح زمین می رسند.
پرتوهای ذرات
پروتون ها و الکترون ها دائما مانند بادهای خورشیدی از سطح خورشید بلند می شوند. این ذرات به زمین بسیار نزدیک می شوند ولی میدان مغناطیسی زمین مانع از ورود آنها به سطح زمین می شود.
به هر حال به دلیل انفجارها و گدازه های تاج و زبانه های خورشیدی، ذرات زیادی با شدت به اتمسفر زمین می رسند. این ذرات را به نام پرتوهای کیهانی خورشیدی می شناسند. بیشتر این ذرات پروتون ها هستند ولی الکترون ها نیز در آنها وجود دارند. آنها به شدت پر انرژیند. بنابراین می توانند برای فضانوردها و کاوشگرها خطرآفرین باشند.
--------
*برای درک بهتر از معنی طول موج تصور کنید،حشره ای در آب یک حوض آرام دست و پا می زند و امواجی دایره ای به سمت حاشیه های اطراف حوض منتشر می شوند. به بلندترین قسمت هر موج دایره شکل "قله" می گویند. فاصله میان هر دو قله "طول موج" نامیده می شود. شمار قله هایی که در هر ثانیه به حاشیه حوض می رسند "فرکانس" نام دارد. هر چه فرکانس بیشتر باشد، طول موج کوتاه تر است
پرتوهای کیهانی نمی توانند به سطح زمین برسند. هنگامیکه آنها با اتمسفر زمین برخورد می کنند، تبدیل به بارانی از ذرات کم انرژی تر می شوند. ولی از آنجائیکه رویدادهای خورشیدی بسیار پر انرژی هستند، آنها می توانند طوفانهای ژئومگنتیک را، بویژه در میدان مغناطیسی زمین به وجود آورند. این طوفانها می توانند باعث مختل شدن تجهیزات الکتریکی در سطح زمین شوند. برای مثال آنها می توانند با افزایش فشار بار کابلها منجر به قطع برق شوند.
رنگ
در طیف پرتوهای الکترومغناطیس، نور مرئی متشکل از رنگهای موجود در رنگین کمان می باشد. نور خورشید شامل همه این رنگها است. بیشتر پرتوهایی که از خورشید به ما می رسند رنگهای زرد تا سبز از طیف نور مرئی می باشند. در هر صورت نور خورشید سفید است. هنگامیکه اتمسفر زمین مانند یک فیلتر برای تنظیم خورشید عمل می کند، خورشید ممکن است زرد یا نارنجی به نظر رسد.
شما می توانید نور خورشید را به کمک یک منشور نگاه کرده و آن را تفکیک کنید. نور قرمز، که توسط کم انرژی ترین فوتون ها، با بلندترین طول موج، به وجود می آید در یکی از دو انتهای طیف قرار می گیرد. نور قرمز در نور نارنجی و سپس زرد محو می شود. پس از زرد، نور سبز و بعد از آن آبی را خواهید دید. آخرین رنگ نیز بنفش می باشد که با پر انرژی ترین فوتون ها و کوتاه ترین طول موج، به وجود می آید. این فهرست رنگ به این معنا نیست که نور خورشید تنها از شش یا هفت رنگ تشکیل شده بلکه هر یک از رنگ های مابین رنگهای مذکور، خود یک رنگ به حساب می آید. تعداد رنگهای موجود در طبیعت از تعداد رنگهاییکه انسان تابه حال نامگذاری کرده بسیار بیشتر است.
چرخش خورشید
خورشید تقریبا در هر ماه یک دور کامل به دور خود می چرخد. ولی از آنجائیکه خورشید یک جرم گازیست نه یک جرم جامد، قسمتهای مختلف آن با سرعت متفاوت حرکت می کند. گازهای نزدیک به خط استوای خورشید در هر 25 روز یک دور کامل حرکت می کنند، در حالیکه گردش کامل گازهای موجود در عرضهای جغرافی بالاتر 28 روز به طول می انجامد. محور گردش خورشید با چند درجه شیب نسبت به محور گردش زمین قرار گرفته است بنابراین قطب جغرافی شمال یا قطب جغرافی جنوب آن معمولا از زمین قابل رویت است.
ارتعاش
ارتعاشات خورشید مانند زنگیست که دائم در حال نواخته شدن است. خورشید در آن واحد بیشتر از 10 میلیون درجه صوت مختلف ایجاد می کند. ارتعاشات گازهای خورشیدی از نظر مکانیکی شبیه به ارتعاشات هوا، که آنها را با نام امواج صوتی* می شناسیم، می باشند. از این رو ستاره شناسان امواج خورشیدی را به رغم اینکه نمی شنویم، مانند امواج صوتی می دانند. سریعترین ارتعاش خورشیدی حدود 2 دقیقه به طول می انجامد. مدت زمان یک ارتعاش مقدار زمان لازم برای کامل شدن یک حلقه یا سیکل از ارتعاش است. آرام ترین ارتعاشی که گوش انسان قادر به تشخیص آن می باشد مدت زمانی معادل 20/1 ثانیه دارد.
بیشتر امواج صوتی خورشید از "سلولهای حرارتی" موجود در توده های متراکم گاز در اعماق خورشید سرچشمه می گیرند. این سلولها انرژی را تا سطح خورشید بالا می آورند. بالا آمدن این سلولها مانند بالا آمدن بخار از آب در حال جوشیدن است. واژه سلولهای حرارتی به همین دلیل به آنها اطلاق می گردد. هنگامیکه سلولها بالا می آیند، سرد می شوند. آنگاه به درون خورشید جائیکه بالا آمدن از آنجا آغاز می شود باز می گردند. در هنگام سقوط و پائین رفتن سلولهای حرارتی ارتعاش شدیدی به وجود می آید. این ارتعاش باعث می شود که امواج صوتی از درون سلولها خارج شوند.
از آنجائیکه اتمسفر خورشید غلظت کمی دارد، امواج صوتی نمی توانند در آن به حرکت و جریان درآیند. در نتیجه، وقتی که یک موج به سطح می رسد مجددا به درون خورشید بر میگردد. بنابراین قسمت کوچکی از سطح خورشید حرکت تند و سریعی به بالا و پائین پیدا می کند. وقتی یک موج به درون خورشید سفر می کند، به سمت بالا و سطح آن خم می شود. مقدار انحنای موج بستگی به چگالی گازی که موج درون آن حرکت میکند و مواردی دیگر دارد. در نهایت، موج به سطح می رسد و دوباره به درون بر می گردد. این رفت و آمدها تا آنجا که موج انرژی خود را در گازهای پیرامون از دست بدهد، ادامه خواهد داشت.
امواجی که به عمیق ترین فاصله از سطح خورشید فرو می روند طولانی ترین مدت را دارند. برخی از این امواج تا هسته خورشید فرو می روند و مدتی معادل چندین ساعت دارند.
--------
*هوا دارای خاصیت ارتجاعی میباشد هنگامی که یک لایه از مولکولهای هوا به جلو رانده میشود، این لایه به نوبه خود لایه دیگری را به جلو میراند و خود به حال اول بر میگردد. لایه جدیدی نیز لایه دیگری را به جلو میراند و به همین ترتیب این عمل بارها و بارها تکرار میگردد تا انرژی به پایان برسد. این جابجایی مولکولها اگر بیش از 16 مرتبه در ثانیه تکرار گردد صدا بوجود میآید. هر رفت و برگشت لایه هوا یک سیکل نام دارد و تعداد سیکل در ثانیه تواتر یا بسامد یا فرکانس نامیده میشود.
میدان مغناطیسی
گاهی اوقات، میدان مغناطیسی خورشید به شکلی ساده و گاهی به شدت پیچیده است. زمانی میدان مغناطیسی شکلی ساده دارد که محور عمودی خورشید مانند یک آهن ربای غول پیکر عمل کند. شما با انجام آزمایش براده آهن بر روی کاغذ و یک آهن ربا می توانید شکل میدان مغناطیسی آهن ربا را مشاهده کنید. بیشتر براده ها در حلقه های D شکلی که دو سر آهن ربا را به هم وصل می کنند تجمع می نمایند. فیزیکدانان میدان مغناطیسی را به صورت خطوطی فرضی که حلقه های براده آهن بر روی آنها قرار می گیرند ، فرض می نمایند. به این خطوط ، خطوط میدان مغناطیسی یا خطوط نیرو می گویند. دانشمندان به این خطوط، مسیر اختصاص داده اند. به یک سر آهن ربا قطب شمال مغناطیسی و به سر دیگر قطب جنوب مغناطیسی اطلاق می گردد. خطوط مغناطیسی از قطب شمال آهن ربا بیرون می آیند و با ایجاد یک خمیدگی از ناحیه قطب جنوب مغناطیسی وارد آهن ربا می شوند.
دلیل ایجاد میدان مغناطیسی خورشید انتقال حرارتی در خورشید است. هر ذره باردار الکتریکی می تواند با حرکت و جابجایی یک میدان مغناطیسی به وجود آورد. سلولهای حرارتی که از یونهای مثبت و الکترون ها تشکیل شده اند، به شکلی منتشر می گردند که باعث ایجاد میدان مغناطیسی خورشید می شود.
وقتی میدان مغناطیسی خورشید پیچیده می شود، خطوط مغناطیسی دچار پیچ و تاب می شوند. میدان مغناطیسی به دو دلیل این چرخش ها و پیچیدگی ها را به وجو می آورد: اول اینکه خورشید در منطقه استوایی بسیار سریع تر از قسمتهای دیگر حرکت می کند و دوم اینکه لایه های درونی خورشید بسیار سریع تر از سطح آن در گردشند. تفاوت در سرعت گردش در قسمتهای مختلف باعث کشیده شدن خطوط مغناطیسی در جهت شرق می شوند. در نهایت، این خطوط دچار اعوجاج گشته و پیچ و تاب هایی را ایجاد می نمایند.
در برخی مناطق، میدان مغناطیسی هزاران بار قوی تر از میدان مغناطیسی عمومی خورشید است. در این مناطق، دسته هایی از خطوط مغناطیسی به بیرون از سطح آمده و حلقه هایی را در اتمسفر خورشید به وجود می آورند. یکی از دو سر این حلقه ها، قطب شمال مغناطیسی است. در این نقطه جهت خطوط مغناطیسی به سمت بالا می باشد. سر دیگر این حلقه ها قطب جنوب مغناطیسی است و جهت خطوط مغناطیسی به سمت پائین و داخل خورشید است. در هر دو سر هر حلقه یک لکه خورشیدی پدیدار می گردد. خطوط مغناطیسی، یونها و الکترونها را به سمت بیرون لک های خورشیدی راهنمایی می کنند و به این صورت حلقه هایی غول پیکر از گاز تشکیل می شوند.
تعداد لکه ها بر روی خورشید به اعوجاج های میدان مغناطیسی آن بستگی دارد. تغییر تعداد آنها، از حداقل به حداکثر و دوباره به حداقل، چرخه لکه های خورشیدی نامیده می شود. میانگین مدت یک چرخه حدود 11 سال می باشد.
در پایان هر چرخه از لکه های خورشیدی، میدان مغناطیسی به سرعت دچار جابجایی قطبی می شود و بسیاری از اعوجاج های خود را از دست می دهد. فرض کنید که قطب شمال مغناطیسی خورشید در آغاز یک چرخه در ناحیه قطب شمال جغرافیایی خورشید قرار دارد. در زمان شروع چرخه بعدی، قطب شمال مغناطیسی خورشید در محل قطب جنوب جغرافیایی آن قرار می گیرد. یک تغییر قطبی از یک جهت به جهتی دیگر و بازگشت مجدد آن برابر با دو چرخه پیاپی و درنتیجه معادل 22 سال می باشد.
ترکیب هسته ای
ترکیب هسته ای در مرکز خورشید به دلیل دما و تراکم فوق العاده زیاد می تواند صورت پذیرد. از آنجائیکه بار ذرات مثبت است، تمایل به دفع یکدیگر دارند اما دما و تراکم هسته خورشید به قدری زیاد است که می تواند آنها را در کنار یکدیگر نگاه دارد.
رایج ترین ترکیب هسته ای در مرکز خورشید زنجیره پروتون-پروتون نام دارد. این فرایند زمانی انجام می گیرد که ساده ترین شکل از هسته های هیدروژن (دارای یک پروتون) در یک آن کنار هم قرار می گیرند. نخست، هسته ای متشکل از دو ذره به وجود می آید، سپس هسته ای با سه ذره و در نهایت هسته ای با چهار ذره شکل می گیرد. در این فرایند همچنین یک ذره الکتریکی خنثی به نام نوترینو پدیدار می گردد.
هسته نهایی شامل دو پروتون و دو نوترون است که در واقع هسته هلیوم می باشد. جرم این هسته به مقدار بسیار اندکی کمتر از جرم چهار پروتونیست که هسته از آن تشکیل شده است. جرم از دست رفته به انرژی تبدیل شده است. این مقدار از انرژی به کمک فرمول مشهور فیزیکدان آلمانی، آلبرت اینشتین، E=mc2 قابل محاسبه است. در این معادله E به معنای انرژی، m به معنای جرم و c به معنای سرعت نور می باشد.
مقایسه با دیگر ستارگان
کمتر از 5 درصد ستارگان در کهکشان راه شیری نورانی تر یا سنگین تر از خورشید می باشند. ولی برخی از ستارگان بیش از 100.000 برابر نورانی تر از خورشید، و برخی از آنها جرمی بیش از 100 برابر جرم خورشید را دارند. از سویی دیگر، برخی ستارگان نیز کمتر از 0001/0 خورشید نور دارند، و یک ستاره می تواند کمتر از 07/0 جرم خورشید را داشته باشد. ستاره های داغ تری وجود دارند که بسیار آبی تر از خورشیدند و ستارگان سردتری نیز وجود دارند که سرخ تر از خورشید هستند.
خورشید نسبتا جوان و متعلق به نسلی از ستارگان به نام "جمعیت I ستارگان" می باشد. یک نسل قدیمی تر از ستارگان را با نام "جمعیت II ستارگان" می شناسیم. احتمال وجود نسلی قدیمی تر به نام "جمعیت III ستارگان" نیز وجود دارد که البته تا کنون هیچ عضوی از این گروه شناسایی نشده است.
مناطق خورشید
|
خورشید و اتمسفر آن از چندین منطقه یا لایه تشکیل شده اند. از داخل به خارج، بخش داخلی خورشید متشکل از هسته، منطقه تابشی و منطقه حرارتی می باشد. اتمسفر خورشید نیز از لایه های فوتوسفر، کرومسفر، منطقه انتقالی و تاج خورشید تشکیل شده است. فراتر از تاج خورشید، بادهای خورشیدی، که معمولا جریانات برخواسته از گازهای تاج خورشید می باشند، وجود دارند.
از آنجائیکه ستاره شناسان قادر به دیدن درون خورشید نیستند، کلیه دریافت ها به صورت غیر مستقیم حاصل می گردد. برخی از اطلاعات بر اساس قسمتهای قابل مشاهده از خورشید به دست آمده اند. برخی از این اطلاعات نیز بر پایه محاسبات انجام شده با داده هایی از مناطق قابل رویت پیرامون خورشید ثبت گردیده است.
هسته
منطقه هسته از مرکز خورشید تا حدود یک چهارم به سمت سطح خورشید گسترده شده است. هسته حدود 2 درصد از حجم خورشید اما تقریبا نصف جرم آن را دارد. حداکثر دمای این منطقه 15 میلیون کلوین است. چگالی آن به 150گرم در هر سانتیمتر مکعب، تقریبا 15 برابر چگالی سرب، می رسد.
دما و چگالی بالای هسته به سبب فشار بسیار زیادی، معادل حدودا 200 بیلیون بار بیشتر از فشار جو زمین در سطح دریا، می باشد. فشار زیاد هسته با در بر گرفتن همه گازهای خورشید، مانع از فروپاشی آن می شود. در واقع هسته با داشتن این فشار زیاد، وزن خورشید را تحمل میکند.
تقریبا همه ترکیبات اتمی در این منطقه صورت می گیرند. مانند سایر قسمتهای خورشید، هسته آن نیز، بر اساس جرم، از 72 درصد هیدروژن، 26 درصد هلیوم و 2 درصد عناصر سنگین تر تشکیل شده است. ترکیبات اتمی به تدریج محتویات هسته را تغییر داده اند. در حال حاضر 35 درصد از جرم هیدروژن در قسمتهای مرکزی هسته و 65 درصد آن در مرزهای بیرونی هسته متمرکزند.
منطقه تابشی
پیرامون هسته، پوسته ضخیمی به نام منطقه تابشی وجود دارد. ضخامت این پوسته تا 70 درصد از شعاع خورشید پیش رفته است. این منطقه 32 درصد از حجم و 48 درصد از جرم آن را شامل می شود.
این منطقه به دلیل اینکه انرژی غالبا در این جا به صورت نور و تشعشع سفر می نماید، منطقه تابشی نام گرفته است. فوتون های به وجود آمده در هسته از میان لایه های پایدار گاز عبور می کنند. اما آنها به خاطر غلظت شدید ذرات گاز دچار پراکندگی شده و گاهی مدت 1 میلیون سال طول می کشد که یک فوتون از این منطقه گذر کند.
در پایین منطقه تابشی، چگالی معادل 22 گرم در هر سانتیمتر مکعب (حدودا دو برابر چگالی سرب) و دما 8 میلیون K می باشد. در بالای منطقه تابشی، چگالی معادل 0.2 گرم در هر سانتیمتر مکعب و دما 2 میلیون K است.
ترکیبات عناصر در منطقه تابشی از زمان تولد خورشید تا به امروز به همین شکل باقی مانده است. درصد عناصر در بالای منطقه تابشی بسیار شبیه به سطح خورشید میباشد.
منطقه حرارتی
بالاترین لایه درونی خورشید، منطقه حرارتی، از منطقه تابشی تا سطح خورشید کشیده شده است. این منطقه از سلول های حرارتی در حال جوش تشکیل شده است که 66 درصد از حجم خورشید و تنها کمی بیش از 2 درصد جرم آن را به خود اختصاص داده است. در بالای منطقه، چگالی نزدیک به صفر و دما حدود 5800 K می باشد. از آنجا که فوتون های خارج شده از منطقه تابشی باعث داغ شدن سلولهای حرارتی می گردند، این سلولها به سمت سطح خورشید در جوش و التهابند.
ستاره شناسان تا کنون دو نوع از سلولهای حرارتی را مشاهده کردند. سلولهای دانه ای (granulation) و سلولهای ریز دانه ای (supergranulation). سلولهای دانه ای حدود 1000 کیلومتر و سلولهای ریزدانه ای در منطقه ای باضخامت تقریبی30000 کیلومتر می باشند.
فوتوسفر
پایین ترین لایه اتمسفر خورشید فوتوسفر نام دارد. این منطقه نوری را که ما می بینیم متساطع می نماید. ضخامت فوتوسفر 500 کیلومتر است. ولی بخش اعظم نوری که ما مشاهده می کنیم از پایین ترین قسمتهای این منطقه که ضخامت آن تنها حدود 150 کیلومتر است ناشی می شود. ستاره شناسان گاهی این قسمت را، سطح خورشید می دانند. در پایین فوتوسفر دما 6400K و در بالای آن 4400K می باشد.
فوتوسفر از شمار زیادی دانه تشکیل شده که در بالای سلولهای دانه ای قرار دارند. یک دانه معمولی حدو 15 تا 20 دقیقه عمر می کند. میانگین چگالی فوتوسفر کمتر از یک میلیونیم گرم در هر سانتیمتر مکعب می باشد. به نظر می رسد که این مقدار چگالی بسیار ناچیز است اما در هر سانتیمتر مکعب از این منطقه بین ده ها تریلیون تا صدها تریلیون ذرات خاص وجود دارند.
کرومسفر
منطقه بعدی کرومسفر است. مهمترین خصوصیت این منطقه افزایش دما بین 10.000K تا 20.000K می باشد.
ستاره شناسان نخست طیف کرومسفر را در هنگام کسوف های کامل شناسایی کردند. این طیف پس از آنکه ماه فوتوسفر را می پوشاند، قبل از پوشیده شدن کرومسفر در سایه ماه، قابل رویت است. این حالت تنها چند ثانیه به طول می کشد. خطوطی که از این طیف منتشر می شوند مانند نور فلش به طور ناگهانی به چشم می خورند، از این رو به این طیف، طیف فلش می گویند.
کرومسفر ظاهرا از تشکیلاتی شبیه میخ به نام "خار" ساخته شده است. یک خار معمولی حدود 1000 کیلومتر عرض و تا 10.000 کیلومتر ارتفاع دارد. چگالی کرومسفر حدود 10 بیلیون تا 100 بیلیون ذره در هر سانتیمتر مکعب است.
منطقه انتقالی
دمای کرومسفر تا حدود 20.000K ، و دمای تاج خورشید به بیش از 500.000K می رسد. بین دو منطقه مذکور، منطقه ای با میانگین دما وجود دارد که به آن منطقه انتقالی می گویند. این منطقه بیشتر انرژی خود را از تاج خورشید می گیرد و بیشتر نور خود را به شکل فرابنفش متساطع می نماید.
ضخامت منطقه انتقالی چند صد تا چندین هزار کیلومتر است. در برخی قسمتها، خارهای کرومسفر که نسبتا سرد شده اند سر بر افراشته و به اتمسفر خورشید می رسند. در برخی قسمتها نیز ترکیبات داغ تاج خورشید تا نزدیکی فوتوسفر فرو می رود.
تاج خورشید
تاج خورشید بخشی از اتمسفر آن است و دمایی متجاوز از 500.000K دارد. تاج خورشید متشکل از گازهای یونیزه شده به شکل رود و یا حلقه ای می باشد. ترکیبات و ساختمان تاج خورشید به صورت عمودی به سطح آن متصل است و میادین مغناطیسی که از اعماق خورشید ساطع می گردند منجر به شکل گیری این منطقه می شوند. دمای هر یک از جریانات تاج خورشید به خطوط میدان مغناطیسی شکل دهنده همان جریان بستگی دارد.
دمای نزدیک ترین بخش از تاج خورشید به سطح آن حدودا بین 1 تا 6 میلیون K و چگالی آن معادل 100 میلیون تا 1 بیلیون ذره در هر سانتیمتر مکعب می باشد. دمای این منطقه هنگام وقوع یک فوران به ده ها میلیون کلوین می رسد.
بادهای خورشیدی
تاج بسیار داغ خورشید در فضا منتشر و دائم در آن گسترده می شود. به جریان گازهای تاج خورشید در فضا، بادهای خورشیدی می گویند. چگالی این بادها در نزدیکی خورشید تقریبا بین 10 تا 100 ذره در هر سانتیمتر مکعب می باشد.
باد خورشیدی با سرعتی معادل صدها کیلومتر در ثانیه از خورشید به هر سوی می وزد. در فواصل زیادی از خورشید یعنی فراتر از مدار پلوتو، از سرعت این باد که مافوق صوت می باشد، کاسته می شود و با گازهای میان ستاره ای ترکیب می گردد.
بادهای خورشیدی به شکل یک حباب بزرگ شبیه به قطره اشک به نام هلیوسفر، در فضای میان سیاره ای گسترده شده است. خورشید و همه سیاره های آن درون هلیوسفر می باشند. فراتر از مدار پلوتو، دورترین سیاره از خورشید، هلیوسفر به گازها و غبارهای میان ستاره ای می پیوندد. گرچه اتمهای موجود در فضای بین ستاره ای می توانند در این حباب نفوذ نمایند اما در واقع می توان گفت که همه مواد تشکیل دهنده هلیوسفر از خود خورشید ناشی می شوند.
فعالیت های خورشیدی
میدان های مغناطیسی خورشید از منطقه حرارتی، بالا رفته و از میان مناطق فوتوسفر، کرومسفر و تاج خورشیدی سر بر می آورند. این جریانات مغناطیسی منجر به شکل گیری فعالیت های خورشیدی می گردند. این فعالیت ها شامل پدیده هایی به نام لکه های خورشیدی، شعله های بلند، زبانه ها و فوران های تاج خورشید می باشند.
زبانه های خورشیدی
زبانه های خورشیدی انفجارهای مهیبی در سطح خورشید می باشند. در مدت زمانی معادل چند دقیقه یک زبانه می توانند دمای مواد موجود را تا میلیون ها درجه افزایش دهد و انرژیی آزاد نماید که معادل انرژی آزاد شده توسط یک هزار بیلیون تن TNT می باشد. این انفجارها در نزدیکی لکه های خورشیدی، معمولا در راستای خطوطی بین دو سر میدان مغناطیسی رخ می دهند.
زبانه ها انرژی را به اشکال گوناگونی مانند پرتوهای الکترومغناطیس (پرتوهای گاما و ایکس) و ذرات باردار (پروتون و الکترون) آزاد می کنند.
دانشمندان برای نخستین بار به این نتیجه رسیدند که زبانه ها و فوران های خورشیدی لرزه هایی را در اعماق خورشید به وجود می آورند که بسیار شبیه به زمین لرزه در سیاره ما می باشند. محققان زبانه ای را مشاهده نمودند که منجر به وقوع لرزه ای بسیار شدید در اعماق خورشید گردید. این لرزه 40 هزار بار بیشتر از زمین لرزه شدید سانفرانسیسکو در سال 1906 انرژی آزاد نمود. مقدار این انرژی آزاد شده به حدی بود که می توانست برق مصرفی ایالات متحده را تا مدت 20 سال تامین نماید.
مناطقی که لکه های خورشیدی و فوران ها در آنها شکل می گیرند، مناطق فعال نامیده می شوند. مقدار فعالیت های خورشیدی از ابتدای یک چرخه لکه خورشیدی، به تدریج افزایش می یابد و با گذشت پنج سال به حداکثر می رسد. تعداد لکه ها در هر زمان متفاوت است. در قسمتی از صفحه خورشید که ما می بینیم، تعداد آنها از صفر تا 250 لکه تغییر می کند.
لکه های خورشیدی
لکه ها ی خورشیدی مناطقی تیره و تقریبا دایره ای شکل در سطح خورشید می باشند. آنها زمانی شکل می گیرند که دسته ای از خطوط مغناطیسی درون خورشید به سطح آن می رسند.
دمای لکه ها از دمای مناطق اطرافشان کمتر و میدان مغناطیسی در آنها بسیار قوی است. دمای لکه های خورشیدی بین 4000 تا 4500 کلوین و دمای سطح خورشید 5700 کلوین است. به همین دلیل آنها تیره تر از سطح ستاره به نظر می رسند.
داده های رصدی از دهه 80 قرن بیستم نشان می دهند که تعداد لکه های خورشیدی با شدت تابش خورشید مرتبط است. جالب این که هر چه تعداد لکه ها بیشتر باشد، شدت تابش نور خورشید بیشتر است، چون که مناطق اطراف لکه ها درخشان تر اند.
ابرنواختر ستاره ای در حال انفجار می باشد که می تواند بیلیون ها بار درخشان تر از خورشید باشد، پیش از آنکه به تدریج محو شود. در هنگام درخشندگی، نور یک ستاره منفجر شده می تواند همه یک کهکشان را تحت الشعاع قرار دهد. این انفجار، ابر عظیمی از گاز و غبار را در فضا ایجاد می نماید. جرم مواد موجود در این ابرها می تواند متجاوز از 10 برابر جرم خورشید باشد.
ستاره شناسان دو نوع از ابرنواختر ها را شناسایی کرده اند. نوع اول و نوع دوم. نوع اول ابرنواخترها احتمالا در ستاره های دوتایی شکل می گیرند. ستاره دوتایی به یک جفت ستاره اطلاق می گردد که به هم نزدیکند و دور یکدیگر می چرخند. نوع اول احتمالا در دوتایی هایی رخ می دهد که یکی از آنها یک ستاره کوچک و متراکم به نام کوتوله سفید است. اگر این دو ستاره به اندازه کافی به یکدیگر نزدیک باشند، جاذبه کوتوله سفید اجرام و ذرات ستاره همراه خود را به سمت خود می کشد. هنگامیکه کوتوله سفید به جرمی معادل 4/1 برابر جرم خورشید رسید، متلاشی و منفجر می گردد.
نوع دوم ابرنواختر در اثر مرگ یک ستاره بسیار بزرگتر از خورشید شکل می گیرد. زمانیکه چنین ستاره ای به آخر عمر خود می رسد، هسته آن به سرعت متلاشی می گردد. حجم بینهایت زیادی انرژی ناگهان به شکل نوترون (نوعی از ذرات تشکیل دهنده اتم) و پرتوهای الکترومغناطیس (نیروهای الکتریکی و مغناطیسی) آزاد می شود. این انرژی باعث تبدیل ستاره به ابرنواختر می گردد.
بیشتر ابرنواختر ها در چند روز نخست شکل گیری به حداکثر درخشندگی می رسند و تا چندین هفته درخشندگی آنها ادامه خواهد داشت. با گذشت چند ماه درخشندگی آنها کم می شود. و در طی سالها همچنان از درخشندگی آنها کاسته می گردد. تفاوت دیگر ابرنواختر ها در مقدار و ترکیب موادیست که به فضا خارج می کنند.
ابرنواختر ها همچنین می توانند اجرام گوناگونی را بر جای بگذارند. پس از برخی از انفجارهای ابرنواختر، ستاره ای کوچک و متراکم متشکل از نوترون ها و یا شاید ذرات بنیادی کوارک بر جای مانده است. به چنین ستاره ای ستاره نوترونی می گویند. به ستاره های نوترونی که به سرعت می چرخند و به شدت مغناطیسی باشند، اصطلاحا تپ اختر می گویند. پس از برخی انفجارها ممکن است جرم نامرئی به نام سیاهچاله ایجاد گردد. سیاهچاله چنان گرانشی دارد که حتی نور نیز منی تواند از آن عبور کند.
دانشمندان بر این باورند که ابرنواخترها به وجود آرندگان عناصر سنگینی چون آهن، طلا و اورانیوم که در زمین و اجرام منظومه شمسی یافت شده اند می باشند.
در سال 1054 ستاره شناسان چینی ابرنواختری را ثبت کردند که در تمام طول روز درخشش آن پیدا بود. این انفجار از خود یک تپ اختر و سحابی کراب که همچنان قابل رصد است را بر جای گذاشت.
در سال 1987، یک ابرنواختر در ابر ماژلانی، نزدیک ترین کهکشان به راه شیری، مشاهده شد. در طی 400 سال این اولین ابرنواختری بود که با چشم غیر مسلح قابل رویت بود.
جدول آماری خورشید |
| |
جرم (کیلوگرم) | 1.989e+30 | |
جرم (زمین =1) | 332,830 | |
شعاع استوایی (کیلومتر) | 695,000 | |
شعاع استوایی (زمین =1) | 108.97 | |
میانگین چگالی (گرم در سانتیمتر مکعب) | 1.410 | |
دوره گردش (روز) | 25-36 | |
شتاب گریز از سطح (کیلومتر در ثانیه) | 618.02 | |
درخشندگی (ارگ* در ثانیه) | 3.827e33 | |
میانگین دمای سطح | 6,000°C | |
سن (بیلیون سال) | 4.5 | |
عناصر اصلی شیمیایی | 92.1% | |
هیدروژن | 7.8% | |
هلیوم | 0.061% | |
اکسیژن | 0.030% | |
کربن | 0.0084% | |
نیتروژن | 0.0076% | |
نئون | 0.0037% | |
آهن | 0.0031% | |
سیلیکون | 0.0024% | |
منیزیوم | 0.0015% | |
گوگرد | 0.0015% | |
| | |
*ارگ (erg) واحد انرژی در دستگاه cgs، معادل کار انجام گرفته در بالا بردن جرمی معادل 001/0 گرم تا ارتفاع یک سانتیمتر. برای مثال یک حشره موقع بالا رفتن از ضخامت یک برگ کاغذ، 1 ارگ انرژی مصرف می کند. ما به هنگام بالا رفتن از یک پله، یک میلیارد ارگ انرژی مصرف می کنیم.
منابع:
کتاب اتمهای سکوت نوشته اوبر ریوز ترجمه عباس مخبر
0 نظر:
ارسال یک نظر